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Historical Context

* At the dawn of the age of planetary exploration,
seismology was considered a key technique for
understanding a planet.

* The first instruments sent to the surface of
another planet were seismometers.

* Rangers 3-5, 1962

* The two highest scientific priorities of the
Apollo program were sample return and
seismology.

* Apollos 11,12,14,15,16, 1969-1977
#* The first landers on Mars carried seismometers.

* \iking 1,2 ; 1975-1977
* 19 months of operations
* 10/-6 m/s"2/,/Hz sensitivity
* 1 failed, one measured the wind
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Historical Context

* At the dawn of the age of planetary exploration, e
seismology was considered a key technique for \ Il / Y-
understanding a planet.

* The first instruments sent to the surface of
another planet were seismometers.

* Rangers 3-5, 1962

* The two highest scientific priorities of the
Apollo program were sample return and
seismology.

* Apollos 11,12,14,15,16, 1969-19/7

# The first landers on Mars carried seismometers.

* Viking 1,2 ; 1975-1977
* 19 months of operations
* 107-6 m/s"2/,/Hz sensitivity
* 1 failed, one measured the wind




Historical Context

* At the dawn of the age of planetary exploration,
seismology was considered a key technique for
understanding a planet.

* The first instruments sent to the surface of
another planet were seismometers.

* Rangers 3-5, 1962

* The two highest scientific priorities of the
Apollo program were sample return and
seismology.

* Apollos 11,12,14,15,16, 1969-1977
#* The first landers on Mars carried seismermeters.

* \iking 1,2 ; 1975-1977
* 19 months of operations
* 10/-6 m/s"2/,/Hz sensitivity
* 1 failed, one measured the wind




Why planetary seismology “

Apollo heritage

Nearside Farside

o Shallow Moonquakes

Anorthositic Crust
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Planetary Seismology tells the story of the solar system




Seismology basics

« Seismology use the transmission of waves through various materials to

derive the structure of the medium seen along the path

Source Pulse

J

Location, Time
)

= s

Origine Time

Transmission
Reflection

Medium 1

¥
Medium 2

Travel Time

Medium n

Ground motion

x )
\)e[mometer Feedback

Seismogram

e
/

.
72
ez 7

Arrival Time

Modified after Schearer, 2010




What Is a seismometer

* A seismometer is just a (very) long period, very, very sensitive accelerometer
which measures the ground motion...It is most of the time based on analog
measurements : no « cool factor » ...( e.g no laser shooting, no 3D image)

* However ..
* Visible IR Imagers , Spectrometers : first microns
* Neutrons : up to a meter
* GPR : meters to km (best cases )
* Seismometers : sounding down to the planet core

* Seismology with several stations (e.g Apollo, Netlander) : sounding with
“classical” ray inversion

* Seismology with one station (like Insight)




Context

Most recent efforts

ICa
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Historical Context

* Since Viking, despite continuous efforts, no
geophysical mission has made its way to Mars
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Historical Context

* Since Viking, despite continuous efforts, no

geophysical mission has made its way to Mars

InSight !
ExoMars/Humboldt —

GEMS 06

Proposal/Study Netl ander
Approved Mission
IMMPACT 98 ——
|
'MMPACT ‘96 |
Viking Mars ‘96 Me !
InterMarsNet
MESUR Network

MarsNet

i'Mars Network Mission . i

1980 1985 1990 1995 2000 2005 2010 2015




From GEMS(06) to Insight
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From GEMS(06) to Insight

*

2010 Discovery Proposal E DLR

Pl : W.B.Banerdt

June 2011 Step 1 selection

August 2012 Step 2 selection
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InSight

A mission into the early
evolution of terrestrial planets
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Understand the formation and evolution of
terrestrial planets through investigation of

the interior structure and processes of Mars.

Directly Addresses NASA SMD and
2011 Decadal Survey Objectives:

* "Understand the origin and
diversity of terrestrial planets.”

s, * "Understand how the evolution
2 of terrestrial planets enables
" and limits the origin and




INSight Mission

* InSight will fly a near-copy of the : ~JE2
successful Phoenix lander \-.C
* |Launch: March 4—2& 2016 from
|
fr

Launch on 3/8/2016

* Nominal end-of-mission: October 6, 2018

View from Ecliptic North looking down on Echptw




Spacecraft configuration

PRESSURE PORT
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THE DAY BEFORE : THE
SITE VISIT : HARD WORK

Bad Food (no time)
[ YOU WILL FIND HAPP\NESS

No pressure ....

IN MIND & HEARI |

PANDA EXPRESS ® PANDA INN I




1he day after ....

“It's time we face reality, my friends. ...
We're not exactly rocket scientists.”




The Day after selection : even more work

Formulation A al Implementation
Pre-Phase A: Phase A: Phase B: Phase C: Phase E:
Concept Studies Concept & Technology Preliminary Design & Final Design & Operations &
Development Technology Completion Fabrication Sustainment

Phase F:
Closeout

Key Decision Points:
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Major Reviews:
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Phase Purpose Typical Output
Pre-Phase A To produce a broad spectrum of ideas and alternatives for missions Feasible system concepts
S te p 1 Concept from wiich new programs/projects can be selected. Determine feasi- | in the form of simulaticns,
Studies bility of desired system, develcp mission concepts, draft system-level | analysis, study reports,
requirements, identify potential technolcgy needs. medels, and mockups
Phase A To determine the feasibility and desirability of a suggested new major | System concept definition
_§ Concept and system and establish an initial baseline compatibility with NASA's stra- | in the form of simulaticns,
S te 2 g Technology tegic plans. Develop final mission concept, system-level requirements, | analysis, engineering
£ Development | and needed system structure technolcgy developments. medels, and mockups and
B trade study definition
PhaseB To define the project in enough detail to establish an initial baseline | End products in the form
Preliminary capable of meeting mission needs. Develop system structure end of mockups, trade study
O m e n t Design and product (and enabling product) requirements and generate a prelimi- | results, specification and
Technology nary design for each system structure end preduct. interface documents, and
Completion prototypes
Phase C To complete the detailed design of the system (and its asscciated End product detailed
P D q Final Design subsystems, including its operations systems), fabricate hardware, and | designs, end product
and Fabrication | code software. Generate final designs for each system structureend | component fabrication,

product.

and software development

A o0R
ATLO

(NASA systems engineering Handbook)

returned samples.

PhaseD To assemble and integrate the products to create the system, mean- | Operations-ready system
§ System while developing confidence that it will be able to meet the system end product with sup-
‘é Assembly, requirements. Launch and prepare for operations. Perform system porting related enabling
E Integration and | end preduct implementation, assembly, integration and test, and products
% Test, Launch transition to use.
E| PhaseE To conduct the mission and meet the initially identified need and Desired system
QOperations and | maintain support for that need. Implement the mission cperations
Sustainment plan.
PhaseF To implement the systems decommissicning/disposal plan developed | Product doseout
Closeout in Phase E and perform analyses of the returned data and any

I’

A

Mission
can be
stopped at
any of the
red triangle




Various points of view

Management,

@ quality

Q ystem Level Technical’

expertise

ComponL:nt level
Technical

expertise

Building an instrument requires several points of view




A small number of lessons learned (and
t’s not the end of the story)

* Build strong requirements

* Build strong development plan with ample margins

* Pass early shock and vibe tests - integrate early subsystems

* Use space qualified parts early in the design (if possible)

* Plan early the validation and verification strategy

* Make an instrument that can be tested on Earth (as far as possible)

* [t’s a lot of work : have a good team and keep the good team spirit in
all circumstances




Bulld strong requirements

* Strong missions and instrument requirements are the key to a
successful project

* |t’s not only « paperwork » or wasted time. A good or bad set of
requirements will enable good communication with the team
actually building the instrument or the mission. It drives the
mission cost very early

* |t must be understandable and verifiable by anyone not familiar
with the science details : this is what *will* happen eventually

* Small is beautiful : a good requirement document is a document
where you cannot delete something




A strong and robust
SClence case Is required
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Because you have no assurance
will be fine ...("

that everythin
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1he performance flowdown
arives the requirements
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You need a good model for

performance reconstruction
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Development plan needs
ample margins

Development plan must must .

be setup carefully to match .y

\L EQM /
: . : i PFM |
mission objectives ..... \FM/ —

EQM can sometime be considered as schedule margin

and ressources




Qualified parts

* Use qualified parts early in the
design

* You cannot base your design
on regular performance parts

* Space qualified parts are very
limited in number and are low
performance

* Qualification of new parts is
lengthy and costly

13 pages (only)

Doeiices

Space Qualified Parts List




Shock and vibe early

* Science instruments are often very fragile, and a mechanical
weakness is likely to have severe impact on the design




INntegrate subsystems early

* Most of the time, science probes are the result of
an international collaboration

* Example : ChemCam (Los Alamos Laboratories,
IRAP) or SEIS (F, UK, D, CH, US)

* |ssues In the interfaces can happen

* The sooner they are detected, the better




Plan early the validation
DrOCEeSS




Viake an instrument that
can be tested on kEarth

Apollo 17 gravimeter could
not operate on the Moon
due to a flaw in the design




Tight Schedule for SEIS

RWEB Thermal Test : LVL Eng. Model-

\__/ 1 /‘J \, ;* o
.\\ r .

SP EM Sensor
and Electronics




Tight schedule also for the
mole

....
.....

Support Structure EM
in Vibration Testing

)ﬁdiometer - Mole Pre-Protoflight Model
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Geothermal Test Bed (GTB) @ JPL
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Where are we today

* Passed PDR and Confirmation Review
* I[n Development and Fabrication
* On Budget — Reserves Exceed NASA Guidelines

* On Schedule - Margins Exceed what Proposed

* Instrument & System Capabilities Exceed All Science Reqs
* May 2014: Critical Design Review +

* October 2014: System Integration Review

* January 2015: Deliver instruments to ATLO
* Participating Scientist Program

* ~dozen new scientists before launch

* November 2015: Confirm landing site

* December 2015: Ship to Vandenberg

* March 2016: Launch

* September 2016: Landing

* October 2018: End of primary mission




t's a lot of work : keep
team spirit at all costs

: L. Kerjean




And maybe ...

1889 AD
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Chang Héng, first seismoscope g
on Earth ( 132 AD) ULl ‘:3.:;.;‘::'“:

Von Rebeur-Pacshwitz (Nature, 1889), first
seismogram on Earth ( M~5.8 in Japan
recorded in Postdam)

2016 AD ?
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First quake detected on Mars
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